
INA0O

Defense Technical Information Center
Compilation Part Notice

OrTAENI T

This paper is a part of the following report:

* Title. Technology Showcase: Integrated Monitoring DiagnQstics anpdEailurePrevention.

Proceedings of a Joint Conference, Mobile, Alabama, April 22-26, 1996.

* To order the complete compilation report, use: _ AD-A325 558

The component part is provided here to allow users access to individually authored sections
of proceedings, annals, symposia, etc. However, the component should be considered within
the context of the overall compilation report and not as a stand-alone technical report.

Distribution Statement A:
This document has been approved for public
release and sale, its distribution is unlimited.

19971126057 Tic
Inforrmation For The Defense Commuitly

7-,r ,

TURBINE ENGINE DIAGNOSTICS USING A PARALLEL SIGNAL PROCESSOR

Theodore A. Bapty, Akos Ledeczi, James R. Davis
Measurement and Control Systems Laboratory

Department of Electrical and Computer Engineering
Vanderbilt University
Nashville, TN 37325

Ben Abbott
Department of Electrical and Computer Engineering

Utah State University
Logan UT

Terry Hayes, Thomas Tibbals
Sverdup Technology Inc., AEDC Group

Arnold AFB, TN

Abstract: For the past several years, the Measurement and Computing Systems
Laboratory has been working in close cooperation with the United States Air Force at
Arnold Engineering Development Center (AEDC), Arnold AFB, to develop techniques for
large-scale instrumentation systems. In-depth, on-line analysis of test data from turbine
engine testing is critical to ensuring an accurate, timely evaluation and diagnosis of engine
performance. Given the complexity of the analysis algorithms and the quantity of data, the
computations overrun the capability of the fastest supercomputers.

This paper describes the development of Computer Assisted Dynamic Data Moruoring
and Acquisition System (CADDMAS). The CADDMAS is a 48 channel, 50 KHz full-
time analysis system, capable of flexible analysis of signals in the time and frequency
domz;ns. Data is presented on real-time displays, showing, for example, spectrums,
Campbell Diagrams, engine-order tracking. The system (both hardware and software) is
synthesized using a novel model-based technique. The approach has been used to generate
several systems used for on-line military and commercial turbine engine data analysis at
Arnold AFB and for analysis of the SSME for NASA. On-line analysis has had a
significant impact on turbine engine testing, reducing the time necessary tc meet testing
objectives and improving the quality of testing results. Substantial savings have been
demonstrated by allowing immediate access to reduced data.

Keywords: Instrumentation, Parallel Processing, Turbine Engine Diagnostics,
Turbomachinery, Model-Based Systems, High-Performance Computing, Digital Signal
Processing, Real-Time Systems.

INTRODUCTION: For the past several years, the Measurement and Computing Systems
Laboratory has been working in close cooperation with the United States Air Force at
Arnold Engineering Development Center (AEDC), Arnold AFB, to develop techniques for
large-scale instrumentation systems. AEDC is the premier aerospace ground testing
facility in the United States. Propulsion testing is of particular importance. Propulsion test
facilities allow aircraft engines to be tested at a range of altitudes, mach numbers,
temperatures, etc. The entire flight envelope of an engine can be simulated.

A tremendous quantity of data is generated during turbine engine testing. Stress testing
exemplifies this problem, where hundreds of sensors must be analyzed over frequencies up
to tens of kilohertz.

In-depth, on-line analysis of this data is critical to ensuring an accurate, timel. ialuation
and diagnosis of engine performance. Given the complexity ' the analysis algorithms and
the quantity of data, the computations overrun the capability of the fastest
supercomputers. Sustained rates of several billion floating point operations per second are
required. This computation is in addition to the demands of acquiring and maintaining the
incoming data. The solution to this problem is to apply parallel processing. Off-the-shelf
hardware is available, allowing construction of massively parallel machines.
Unfortunately, the software technology lags behind.

This paper describes the development of Computer Assisted Dynamic Data Monitoring
and Acquisition System (CADDMAS). The CADDMAS is a 48 channel, 50KHz full-time
analysis system, capable of flexible analysis of signals in the time and frequency domains.
Data is presented on real-time displays, showing, for example, spectrums, Campbell
Diagrams, engine-order tracking. The flexible architecture allows arbitrary analysis to be
added.

DESIGN FACTORS: Construction of large scale instrumentation systems is complex.
The factors that drive this complexity are as follows:

1. Many sensors are necessary to effectively instrument a large system. High
measurement ba -'widths with large number. of sensors generate a significant
computational load. As a result, large-scale parallel processing systems are required to
supply the necessary computational resources.

2. Instrumentation systems have real-time specifications, both hard and soft. Building
real-time systems, especially using parallel hardware, is a complex task.

3. System requirements change rapidly in many applications. The system performance
must scale gracefully over a wide range. Functionality must meet changing
requirements. The systems must be upgraded in-place, with minimal down-time. This
hardware and software scalability incurs a cost in complexity.

4. System implementation cost is also a driving factor. The increase in cost as a system is
scaled-up must be modest To meet this goal, the computational platform is typically a

low-cost parallel DSP platform. Software development and maintenance costs must
be minimized as well.

5. The users of instrumentation systems are typically not instrumentation engineers.
Interaction with the system must mask the underlying complexity, since the domain
users are unlikely to have experience in complex, real-time, reactive, large-scale,
scalable, parallel systems. The user is concerned with specifying system requirements
and with using the resultant system. Interaction should be in terms of familiar domain
concepts.

These factors must be addressed if a successful system is to be constructed. The design
strategy must encompass requirements specification, software design, and hardware design
in a real-time environment. Cost performance requirements also specify that the target
system is a parallel processor.

TARGET DIAGNOSTIC SYSTEM HARDWARE ARCHITECTURE: The systems
are constructed with an application specific network o, Texas Instruments
TMS320C31/40 Signal Processors and/or Inmos transputers. A large number of different
systems have been constructed to meet specific processing requirements. The largest
system is built using 48 TMS320C31's, 12 TMS320C40's, and 48 Motorola 56002's.
The TMS320C31 is a standard Digital Signal Processor, augmented with a primitive
communication facility. The TMS320C40 is a newer DSP with integrated communication
hardware. The TMS family processors are capable of 40 MFLOPS performance and do
the bulk of the analysis, using single precision floating point arithmetic. The Motorola
processors operate on integer data and serve as a data acquisition front-end to the system.

The processors are connected in a modified pipeline topology, closely matching the
information flow within the application. Figure 1 shows the general architecture.

"• The User Interfaces are Intel 486 or Pentium based PC's. They serve to disolay
info,,nation, print hardcopieo, and control the processing options of the system.

"* The "Pr,.-.ss" nodes accumulate information for Campbell Diagrams, perform
Bicoherence computations, and route information throughout the system.

"* The "Integrated Sensor" nodes perform the low-level operations: FFT, Magnitude
Spectrum, Spectral Peaks, Engineering Unit Conversion, etc.

-3

I n !MInterface it r-ac 0 0 0' interface

Process Process Process Proes

Integrated 0 000 Integrated Integrated Integrated
Sensor Sensor Sensor Sensor

Fro1 Fro: Fro, Fron

Frnt Front
Endlen End End

MODEL-BASED DESIGN METHODOLOGY: The system (both hardware and
software) is synthesized using a novel model-based technique. Using this technique, the
engineer building the system represents the goals of the system in terms of Models - such
as signal flow graphs and processing requirements. These models are interpreted to
automatically generate the wiring diagrams of the hardware and the executable software
files.

In order to manage the complexity of the effort while satisfying the flexibility and
remaining within cost, a careful, structured approach must be used. We are approaching
the class of parallel instrumentation systems using multiple-aspect modeling. The overall
system architecture for parallel real-time instrumentation is shown in Figure 2. The basic
thrust in the model-based approach is to model the system at appropriate levels, in a
domain-specific manner. The domain specific nature allows us to represent the system
design in concepts that are familiar to the end-user.

The information capture process is a combination of graphical editing and/or textual
menu-based forms where appropriate. These models are interpreted various ways tc
generate the executable systems and other tools. The proper definition of the paradigms iL
critical to the success of the approach. In this section we describe the paradigms
developed for the domain of parallel real-time instrumentation systems.

'q

The organization of the modeling paradigm is driven by the structure of the entire testing
process. This includes the process of specifying and building the systems as well as the
users involved. The user interactions and processes of building instrumentation systems
can be broken into three phases. In the first phase, the range of system capabilities and
resources are defined by the Instrumentation System Engineer. The phase I paradigm
is called System Resource Modeling, where parameterized models specify the available
processing & output classes along with implementation structure and parameter options.
In addition, the available hardware resources and system inputs are defined.

In the second phase of system construction, Requirements Specification, the Domain
Engineer uses editors automatically generated from phase I to specify requirements for
the desired instrumentation system implementation. The characteristics of the system are
selected here: inputs, outputs (i.e. plots, alarms, databases), system structure, timing
requirements, etc. Note that the domain engineer is not necessarily trained in signal
processing, computer architecture, or parallel processing.

The third set of users of the system are the operators, who interact with the automatically
generated system resulting from the interpretation of the phase II requirements
specification and phase I System Resource Models. The user interface is a window into
the capabilities specified and built into the system by the domain engineer, allowing
interactive application of these capabilities.

System Requirements Functional
esource Specification System

Modeling
Phase I

System Resource Modeling Paradigm: The system resources can be broken into two
groups: the algorithmic and software implementations & structure and the physical system
components. The conceptual computations are defined in the Signal Flow Aspect, while
the hardware components used in constructing the computational platform, as well as the
connections to the external environment is defined in the Physical Resource Aspect.

Signal Flow Aspect: The signal processing engineer uses the Signal Flow Modeling
aspect to define the mechanisms for generating the user plots. The processing is described
using a signal flow graph representation, commonly used to describe many digital signal
processing algorithms. The primary concepts employed in this paradigm are as follows.

-5

"* Processing Nodes, representing the elemental large grain signal processing operators,
with attributes, specifying run-time behavior, resource requirements (execution time),

"* input/output characteristics, etc., information necessary for process allocation and
scheduling.

"* Connections represent the flow of information between processing nodes.
"* Timing Constraints indicate the critical time path in component computations.
"* Local Parameters allow control of the behavior of the processing nodes from the high-

level builder.

Hierarchy and iterators are used to manage the complexity of large processing structures
and to manage highly regular computational structures.

These concepts are extended further to allow the packaging of various signal flow graphs
into definitions of user plots. The actual implementation of the processing structure used
to gernerate a specific plot may vary depending on the requirements. Consider, for
example, spectral analysis. Many methods exist for computing spectra. The best
algorithm depends on the goals. Multiple implementations can be specified, a ng with the
methodology for selection of the proper option and configuration of the internal
processing. We therefore add the following concepts:
"• The System Output Class Definition consists of a grouping of signal flow graphs

implementing similar functions. These represent the design alternatives available when
generating system outputs. The implementations may differ in computational expense,
resolution, accuracy, or time response.

"* Implementation Option Selection Criteria represent the alternate methods for
implementing a function. Criteria are specified for choosing the best implementation
given a set of specifications. This information allows the builder to choose between,
for instance, an FFT or a filter bank implementation of a spectrum computation. The
selection criteria is specified as an algorithm, a function of the set of configuration
variables. These configuration variables are specified in this model.

"* Implementation Configuration Methods allow the builder to tune the
implementation to match specifications. For example, in an FFr application, the FF1
block size, window function, and overlap ratio must be specified. The implementation
configuration is also specified as an algorithm, 3ince this process is specific to the
signal processing

"* method.

Graphical modeling is a natural paradigm for this system aspect. Signal Flow Graphs have
been used historically to design and conceptualize signal processing systems.

Physical Resource Aspect: Hardware Architecture models for defining the set of DSP's
Transputers, A/D converters, etc. used in the physical construction, allowing the user tc
specify where signals enter the system. Veocessor Nodes correspond to a self containec
processor, memory, 1/0, communications, and special resources. The node attributes t(
be specified include processor type, processor speed(MIPS/MFLOPS), memory size

6

communication bandwidth, etc. Connections define the physical connections between
node. Combined with the processor nodes, this defines the system topology. Signals are
the raw data, the sensors digitized into the system.

Hierarchies of these nodes are used to define preconfigured nodes and connections: sub-
assemblies (boards), chassis, racks, and systems. A graphical model is appropriate in this
paradigm, since it is natural to draw pictures of system architectures and network
topologies.

System Requirements Modeling Paradigm: At the top level, the user of the system
interacts only with familiar concepts, directly reflecting the user's view of the system.
These concepts include: Inputs: The signals available for processing. Outputs: The
output processing requirements of the system. These include Plots, Result Files, and
Alarms. For each of these outputs, the user specifies relevant information, such as type,
accuracy's, range, update rates, maximum latencies.

From this vi, v, the user can specify the capabilities and performance ot the sy,;tem that is
required for a particular test. The complexities of parallel software, signal processing, and
computer hardware are invisible at this level. This is required, since the end-user of the
system is an aerospace engineer, with little concern or training on these issues.

MODEL INTERPRETATION: The model interpretation is a multiple phase operation.
In the first phase, the signal processing expert models the available classes of system
structures and outputs, and the instrumentation engineer defines the signal inputs. These
models are interpreted to generate the System Requirements Definition Model Editor.
This editor is used by the end-user (the domain engineer) to model/specify the system
requirements. The second phase of interpretation takes these requirements and generates
an architecture-independent specification for the software structure of the system. The
final phase integrates the architecture-independent specification and the hardware model
to generate a hardware/software design and implements an executable system. Under
typical operation, the first phase will be used infrequently, whenever new features/plots are
added to the system. The most common design loop will use phase II and III to generate
systems of various sizes, con" gurations, and hardware platform3.

CONCLUSION: The approach has been used to generate several systems used for on-
line military and commercial turbine engine data analysis at Arnold AFB and for analysis
of the SSME for NASA. On-line analysis has had a significant impact on turbine engine
testing, reducing the time necessary to meet testing objectives and improving the quality of
testing results. Substantial savings have been demonstrated by allowing immediate access
to reduced data.

7

BIBLIOGRAPHY:

Bapty, T.A., "Model-Based Synthesis of Parallel Real-Time Systems", PhD Dissertation,
Vanderbilt University, 1995.

Abbott, B, Bapty T. Biegl, C. Karsai, G., Sztipanovits, J. "Model-Based Approach for
Software Synthesis", IEEE Software, pp. 42-53, May, 1993

Karsai, G. "A Visual Programming Environment for Domain-Specific Model-based
Progrnming.", IEEE Computer, May 1995.

Ledeczi, A., Abbott B.A., "'Parallel Systems with Flexible Topology", Proc. of the
Scalable High Perfomace Computing Conference, pp27 1-276, Knoxville, TN 1994.

Sztipanovits, J., Abbott, B., Bapty, T., Misra, A., "Model-3ased Synthesis of Complex
Embedded Systems", Proc. of the 1994 Complex Systems Engineering Synthesis and
Assessment Technology Workshop, Washington D.C. July 19-20, 1994

Bapty, T.A., Abbott, B.A., Biegl, C. Ledeczi, A. "Parallel Turbine Engine Instrumentation
System", Proc. of the 9th AIAA Conference on Computing in Aerospace, San Diego, CA,
October, 1993

